metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{1-[2-(Piperidin-1-yl)ethyliminomethyl]-2-naphtholato}thiocvanatonickel(II)

Yun-Peng Diao,^a Kun Li,^b Shan-Shan Huang,^a Li Lu^a and Ke-Xin Liu^a*

^aSchool of Pharmacy, Dalian Medical University, Dalian 116027, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China Correspondence e-mail: diaoyiwen@126.com

Received 21 August 2007; accepted 22 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.072; wR factor = 0.179; data-to-parameter ratio = 18.3.

In the title mononuclear nickel(II) complex, $[Ni(C_{18}H_{21})]$ $N_2O(NCS)$], the Ni^{II} atom is four-coordinated by the phenolate O, imine N and amine N atoms of the Schiff base ligand, and by the terminal N atom of a thiocyanate anion in a square-planar geometry.

Related literature

For the coordination chemistry and biological properties of nickel(II) complexes with Schiff base ligands, see Brückner et al. (2000); Harrop et al. (2003); Marganian et al. (1995); Ren et al. (2002). For related structures, see Arici et al. (2005); Diao (2007); Diao et al. (2007); Li, Huang et al. (2007); Li, Jiang et al. (2007); Usman et al. (2003); Van Hecke et al. (2007).

Experimental

Crystal data

[Ni(C₁₈H₂₁N₂O)(NCS)] V = 1830.0 (6) Å³ $M_r = 398.16$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 11.663 (2) Å $\mu = 1.19 \text{ mm}^{-1}$ b = 12.530 (3) Å T = 298 (2) K c = 13.484 (3) Å $0.20 \times 0.20 \times 0.17 \text{ mm}$ $\beta = 111.77 \ (3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.797, T_{\max} = 0.824$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	226 parameters
$wR(F^2) = 0.179$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$
4144 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

15376 measured reflections

 $R_{\rm int} = 0.134$

4144 independent reflections

2157 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This project was supported by a research grant from Dalian Medical University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2338).

References

- Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.
- Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106. Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL
- (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.

Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.

- Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.
- Li, J.-M., Jiang, Y.-M., Li, C.-Z. & Zhang, S.-H. (2007). Acta Cryst. E63, m447m449
- Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.
- Marganian, C. A., Vazir, H., Baidya, N., Olmstead, M. M. & Mascharak, P. K. (1995). J. Am. Chem. Soc. 117, 1584-1594.

Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.

Usman, A., Fun, H.-K., Karmakar, T. K., Ghosh, B. K. & Chandra, S. K. (2003). Acta Cryst. E59, m387-m389.

Van Hecke, K., Nockemann, P., Binnemans, K. & Van Meervelt, L. (2007). Acta Cryst. E63, m569-m571.

supplementary materials

Acta Cryst. (2007). E63, m2426 [doi:10.1107/S1600536807041505]

{1-[2-(Piperidin-1-yl)ethyliminomethyl]-2-naphtholato}thiocyanatonickel(II)

Y.-P. Diao, K. Li, S.-S. Huang, L. Lu and K.-X. Liu

Comment

Nickel(II) complexes with Schiff base ligands have received much attention in recent years (Marganian *et al.*, 1995). Some of the complexes have been found to have pharmacological and antitumor properties (Brückner *et al.*, 2000; Harrop *et al.*, 2003; Ren *et al.*, 2002). Nickel is also present in the active sites of several important classes of metalloproteins, as either a homodinuclear or a heterodinuclear species. As part of our research programme on metal complexes of Schiff base ligands (Diao *et al.*, 2007; Diao, 2007; Li, Huang *et al.*, 2007) we report here the structure of the title compound (I) Fig.1.

The Ni^{II} atom in the mononuclear complex is four-coordinate in a square-planar geometry with one phenolate O, one imine N, and one amine N atom of the Schiff base ligand and one terminal N atom of a thiocyanate anion in the coordination sphere (Fig. 1). Bond lengths and angles about the Ni(II) centre are comparable with the values observed in other Schiff base Ni(II) complexes (Arıcı *et al.*, 2005; Li, Jiang *et al.*, 2007; Li, Huang *et al.*, 2007; Usman *et al.*, 2003; Van Hecke *et al.*, 2007).

Experimental

2-Hydroxy-1-naphthaldehyde (0.1 mmol, 17.0 mg), 2-piperidin-1-ylethylamine (0.1 mmol, 12.7 mg), ammonium thiocyanate (0.1 mmol, 7.5 mg), and Ni(NO₃)₂· $6H_2O$ (0.1 mmol, 29.0 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 30 min to give a red solution. After keeping the solution in air for a week, red block-like crystals were formed.

Refinement

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The structure of the complex with displacement parameters drawn at the 30% probability level.

{1-[2-(Piperidin-1-yl)ethyliminomethyl]-2-naphtholato}thiocyanatonickel(II)

Crystal data [Ni(C₁₈H₂₁N₂O)(NCS)]

 $F_{000} = 832$

$M_r = 398.16$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 11.663 (2) Å
<i>b</i> = 12.530 (3) Å
c = 13.484(3) Å
$\beta = 111.77 (3)^{\circ}$
V = 1830.0 (6) Å ³
Z = 4

Data collection

4144 independent reflections
2157 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.134$
$\theta_{\text{max}} = 27.5^{\circ}$
$\theta_{\min} = 1.9^{\circ}$
$h = -14 \rightarrow 15$
$k = -15 \rightarrow 16$
$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.072$	H-atom parameters constrained
$wR(F^2) = 0.179$	$w = 1/[\sigma^2(F_o^2) + (0.0415P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\rm max} < 0.001$
4144 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $D_{\rm x} = 1.445 {\rm Mg m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ Å}$

 $0.20\times0.20\times0.17~mm$

 $\theta = 2.3 - 24.5^{\circ}$ $\mu = 1.19 \text{ mm}^{-1}$ T = 298 (2) KBlock, red

Cell parameters from 539 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Ni1	0.81734 (6)	0.61182 (5)	0.21941 (5)	0.0371 (2)
S1	1.23098 (15)	0.52220 (16)	0.36976 (15)	0.0681 (5)
01	0.7816 (3)	0.5295 (3)	0.0990 (3)	0.0444 (10)
N1	0.6722 (4)	0.6864 (3)	0.1645 (3)	0.0389 (11)
N2	0.8531 (4)	0.6987 (3)	0.3496 (3)	0.0361 (10)
N3	0.9770 (5)	0.5519 (4)	0.2725 (4)	0.0507 (13)
C1	0.5878 (4)	0.6076 (4)	-0.0116 (4)	0.0335 (12)
C2	0.6857 (5)	0.5347 (4)	0.0089 (4)	0.0360 (12)
C3	0.6827 (5)	0.4611 (5)	-0.0724 (5)	0.0478 (15)
H3	0.7444	0.4097	-0.0578	0.057*
C4	0.5922 (5)	0.4642 (5)	-0.1701 (5)	0.0476 (15)
H4	0.5945	0.4159	-0.2217	0.057*
C5	0.4938 (5)	0.5387 (4)	-0.1970 (4)	0.0438 (14)
C6	0.4020 (6)	0.5438 (5)	-0.3007 (5)	0.0590 (18)
Н6	0.4058	0.4970	-0.3529	0.071*
C7	0.3085 (7)	0.6156 (6)	-0.3258 (6)	0.074 (2)
H7	0.2492	0.6186	-0.3946	0.089*
C8	0.3022 (6)	0.6849 (6)	-0.2471 (6)	0.071 (2)
H8	0.2371	0.7330	-0.2635	0.085*
С9	0.3904 (5)	0.6832 (5)	-0.1457 (5)	0.0532 (16)
Н9	0.3845	0.7310	-0.0950	0.064*
C10	0.4894 (5)	0.6110 (4)	-0.1168 (4)	0.0404 (13)
C11	0.5856 (5)	0.6796 (4)	0.0688 (4)	0.0396 (13)
H11	0.5181	0.7252	0.0527	0.048*
C12	0.6534 (5)	0.7687 (5)	0.2368 (5)	0.0501 (16)
H12A	0.5671	0.7723	0.2280	0.060*
H12B	0.6789	0.8384	0.2211	0.060*
C13	0.7314 (5)	0.7350 (5)	0.3487 (5)	0.0517 (16)
H13A	0.7425	0.7945	0.3974	0.062*
H13B	0.6912	0.6775	0.3715	0.062*
C14	0.9339 (5)	0.7901 (4)	0.3413 (4)	0.0392 (13)
H14A	1.0082	0.7611	0.3355	0.047*
H14B	0.8903	0.8297	0.2764	0.047*
C15	0.9699 (5)	0.8657 (4)	0.4346 (4)	0.0470 (15)
H15A	0.8968	0.9023	0.4349	0.056*
H15B	1.0260	0.9190	0.4262	0.056*
C16	1.0315 (6)	0.8091 (4)	0.5405 (4)	0.0506 (16)
H16A	1.0434	0.8589	0.5985	0.061*
H16B	1.1120	0.7831	0.5458	0.061*
C17	0.9519 (6)	0.7147 (5)	0.5505 (4)	0.0524 (16)
H17A	0.9968	0.6744	0.6146	0.063*
H17B	0.8768	0.7415	0.5565	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supplementary materials

C18	0.9195 (6)	0.6420 (4)	0.4537 (4)	0.0483 (15)
H18A	0.9947	0.6108	0.4519	0.058*
H18B	0.8678	0.5843	0.4612	0.058*
C19	1.0826 (6)	0.5392 (4)	0.3121 (4)	0.0397 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0348 (4)	0.0382 (4)	0.0377 (4)	0.0019 (3)	0.0127 (3)	-0.0044 (3)
S1	0.0411 (10)	0.0882 (14)	0.0700 (12)	0.0021 (9)	0.0149 (9)	-0.0089 (10)
01	0.037 (2)	0.047 (2)	0.045 (2)	0.0026 (18)	0.0097 (19)	-0.0137 (18)
N1	0.040 (3)	0.039 (3)	0.036 (3)	0.004 (2)	0.012 (2)	-0.003 (2)
N2	0.037 (3)	0.037 (3)	0.040 (3)	-0.002 (2)	0.020 (2)	-0.004 (2)
N3	0.039 (3)	0.061 (3)	0.042 (3)	0.012 (3)	0.004 (2)	-0.009 (2)
C1	0.033 (3)	0.033 (3)	0.034 (3)	-0.004 (3)	0.012 (2)	0.001 (2)
C2	0.036 (3)	0.036 (3)	0.039 (3)	-0.005 (3)	0.017 (3)	-0.004 (2)
C3	0.046 (4)	0.048 (4)	0.054 (4)	0.001 (3)	0.023 (3)	-0.012 (3)
C4	0.049 (4)	0.049 (4)	0.045 (4)	-0.006 (3)	0.017 (3)	-0.017 (3)
C5	0.051 (4)	0.040 (3)	0.042 (3)	-0.012 (3)	0.019 (3)	-0.002 (3)
C6	0.068 (5)	0.056 (4)	0.039 (4)	-0.019 (4)	0.003 (3)	-0.004 (3)
C7	0.069 (5)	0.067 (5)	0.061 (5)	-0.014 (4)	-0.005 (4)	0.005 (4)
C8	0.065 (5)	0.062 (5)	0.063 (5)	0.004 (4)	-0.003 (4)	0.007 (4)
C9	0.055 (4)	0.056 (4)	0.042 (4)	-0.007 (3)	0.010 (3)	0.003 (3)
C10	0.041 (3)	0.039 (3)	0.046 (3)	-0.004 (3)	0.021 (3)	0.006 (3)
C11	0.039 (3)	0.038 (3)	0.043 (3)	0.003 (3)	0.015 (3)	0.003 (3)
C12	0.045 (4)	0.046 (4)	0.061 (4)	0.005 (3)	0.022 (3)	-0.021 (3)
C13	0.046 (4)	0.062 (4)	0.053 (4)	-0.003 (3)	0.024 (3)	-0.015 (3)
C14	0.043 (3)	0.039 (3)	0.039 (3)	-0.006 (3)	0.018 (3)	-0.002 (3)
C15	0.048 (4)	0.043 (4)	0.044 (3)	-0.002 (3)	0.010 (3)	-0.003 (3)
C16	0.064 (4)	0.040 (3)	0.040 (4)	-0.007 (3)	0.010 (3)	-0.006 (3)
C17	0.072 (4)	0.050 (4)	0.038 (3)	-0.002 (3)	0.023 (3)	-0.004 (3)
C18	0.062 (4)	0.044 (4)	0.041 (3)	-0.007 (3)	0.022 (3)	0.008 (3)
C19	0.053 (4)	0.035 (3)	0.029 (3)	0.007 (3)	0.013 (3)	-0.007 (2)

Geometric parameters (Å, °)

Ni1—N1	1.832 (4)	С7—Н7	0.9300
Ni1—O1	1.836 (3)	C8—C9	1.373 (8)
Ni1—N3	1.886 (5)	С8—Н8	0.9300
Ni1—N2	1.975 (4)	C9—C10	1.404 (8)
S1—C19	1.627 (6)	С9—Н9	0.9300
O1—C2	1.314 (6)	C11—H11	0.9300
N1—C11	1.314 (6)	C12—C13	1.505 (8)
N1—C12	1.489 (6)	C12—H12A	0.9700
N2—C13	1.486 (7)	C12—H12B	0.9700
N2—C18	1.506 (6)	C13—H13A	0.9700
N2	1.513 (6)	C13—H13B	0.9700
N3—C19	1.157 (7)	C14—C15	1.505 (7)
C1—C2	1.407 (7)	C14—H14A	0.9700

C1—C11	1.418 (7)	C14—H14B	0.9700
C1—C10	1.457 (7)	C15—C16	1.516 (7)
C2—C3	1.423 (7)	C15—H15A	0.9700
C3—C4	1.349 (7)	C15—H15B	0.9700
С3—Н3	0.9300	C16—C17	1.540 (8)
C4—C5	1.418 (8)	C16—H16A	0.9700
C4—H4	0.9300	C16—H16B	0.9700
C5—C6	1.412 (8)	C17—C18	1.519 (7)
C5—C10	1.425 (7)	С17—Н17А	0.9700
C6—C7	1.357 (9)	С17—Н17В	0.9700
С6—Н6	0.9300	C18—H18A	0.9700
С7—С8	1.394 (10)	C18—H18B	0.9700
N1—Ni1—O1	93.25 (18)	N1-C11-C1	124.5 (5)
N1—Ni1—N3	172.3 (2)	N1-C11-H11	117.7
01—Ni1—N3	88 87 (18)	C1—C11—H11	117.7
N1—Ni1—N2	86 38 (18)	N1 - C12 - C13	106 3 (4)
01—Ni1—N2	178 83 (17)	N1-C12-H12A	110.5
$N_3 = N_1 = N_2$	91 64 (19)	C13— $C12$ — $H12A$	110.5
$C_2 = O_1 = N_1 I_2$	128 8 (3)	N1-C12-H12B	110.5
C11— $N1$ — $C12$	116 2 (4)	C_{13} C_{12} H_{12B}	110.5
C11—N1—Ni1	1285(4)	H12A - C12 - H12B	108.7
C12—N1—Ni1	115 3 (3)	N2-C13-C12	108.4 (4)
C13 - N2 - C18	108 1 (4)	N2—C13—H13A	110.0
C13 - N2 - C14	112 8 (4)	C12— $C13$ — $H13A$	110.0
C18 - N2 - C14	107.9 (4)	N2_C13_H13B	110.0
C13—N2—Ni1	106.0 (3)	C12— $C13$ — $H13B$	110.0
C18—N2—Ni1	115.8 (3)	H13A—C13—H13B	108.4
C14—N2—Ni1	106 5 (3)	C15-C14-N2	113.8 (4)
C19—N3—Ni1	164.1 (5)	C15-C14-H14A	108.8
C_{2} C_{1} C_{11}	1204(5)	N2_C14_H14A	108.8
$C_2 = C_1 = C_{10}$	1199(5)	C15-C14-H14B	108.8
$C_{11} - C_{12} - C_{10}$	119.7 (5)	N2-C14-H14B	108.8
01 - 02 - 01	124 4 (5)	H_{14A} $-C_{14}$ $-H_{14B}$	100.0
01 - 02 - 03	1167(5)	C_{14} C_{15} C_{16}	112 4 (5)
C1 - C2 - C3	118.9 (5)	C_{14} C_{15} H_{15A}	109.1
$C_{4} = C_{3} = C_{3}$	121.3 (5)	C16-C15-H15A	109.1
C4 - C3 - H3	119.3	C14— $C15$ — $H15B$	109.1
$C_2 = C_3 = H_3$	119.3	C16-C15-H15B	109.1
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}	122 3 (5)	H15A_C15_H15B	107.9
C_{3} C_{4} C_{4} H_{4}	1122.5 (5)	C15-C16-C17	110.6 (5)
$C_5 - C_4 - H_4$	118.8	$C_{15} - C_{16} - H_{16A}$	109.5
C_{6}	121.8 (6)	C17 - C16 - H16A	109.5
C_{6} C_{5} C_{10}	119.7 (6)	C15-C16-H16B	109.5
C4-C5-C10	119.7 (0)	C17—C16—H16B	109.5
C_{7} C_{6} C_{5}	121 4 (6)	H16A_C16_H16B	109.5
C7—C6—H6	119.3	C18 - C17 - C16	110.6 (5)
C5-C6-H6	119.3	C18—C17—H17A	109.5
C_{6} C_{7} C_{8}	119.1 (6)	C16—C17—H17A	109.5
C6—C7—H7	120.4	C18—C17—H17B	109.5
	1-0.1		107.5

supplementary materials

С8—С7—Н7	120.4	C16—C17—H17B	109.5
С9—С8—С7	121.2 (7)	H17A—C17—H17B	108.1
С9—С8—Н8	119.4	N2-C18-C17	113.3 (5)
С7—С8—Н8	119.4	N2	108.9
C8—C9—C10	121.4 (6)	C17-C18-H18A	108.9
С8—С9—Н9	119.3	N2-C18-H18B	108.9
С10—С9—Н9	119.3	C17—C18—H18B	108.9
С9—С10—С5	117.2 (5)	H18A—C18—H18B	107.7
C9—C10—C1	123.9 (5)	N3—C19—S1	179.0 (5)
C5-C10-C1	118.9 (5)		

